

Beyond Short Clips: End-to-End Video-level Learning with Collaborative Memories

Motivation

- The standard way of optimizing 3D video models is clip-level training
 - A single short clip is sampled from the full-length video at each iteration
 - The clip-based prediction is optimized w.r.t. the videolevel action label
- Limitation of clip-level training
 - Not possible to capture long-range temporal dependencies beyond short clips
 - Video-level label may not be well represented in a brief clip

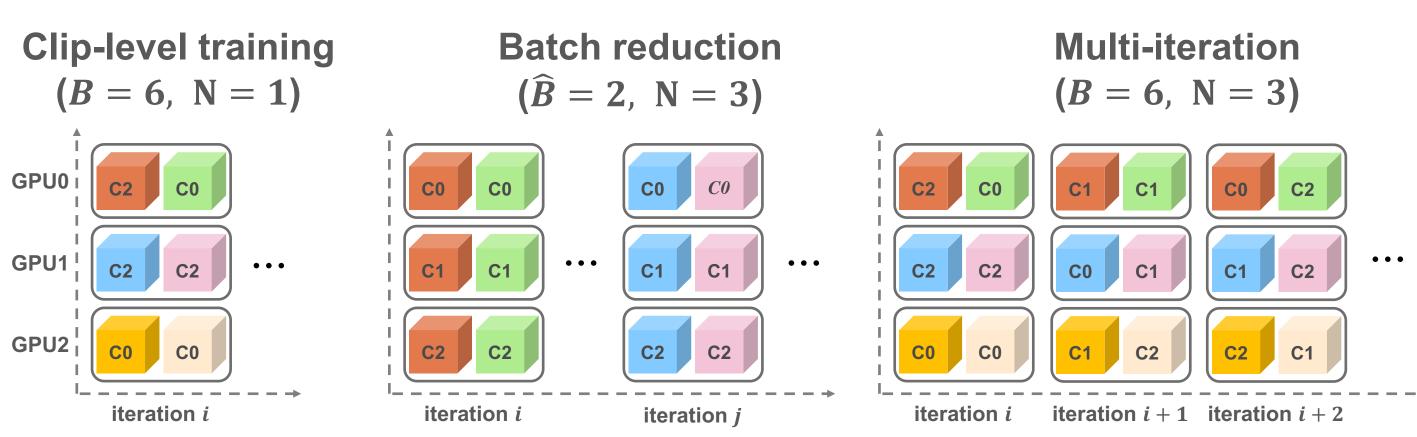
Coping with GPU Memory Constraint

Batch reduction

Reduce the batch size B by a factor of N: $\hat{B} =$

Multi-iteration

Unroll the training of N clips into N consecutive iterations



Xitong Yang¹, Haoqi Fan², Lorenzo Torresani^{2,3}, Larry Davis¹, Heng Wang² ¹University of Maryland, College Park ²Facebook Al ³Dartmouth

End-to-end Video-level Learning Framework

$$= round(\frac{B}{N})$$

Our idea: optimize the *clip-based* model using *videolevel* information collected from the whole video

Multi-clip sampling

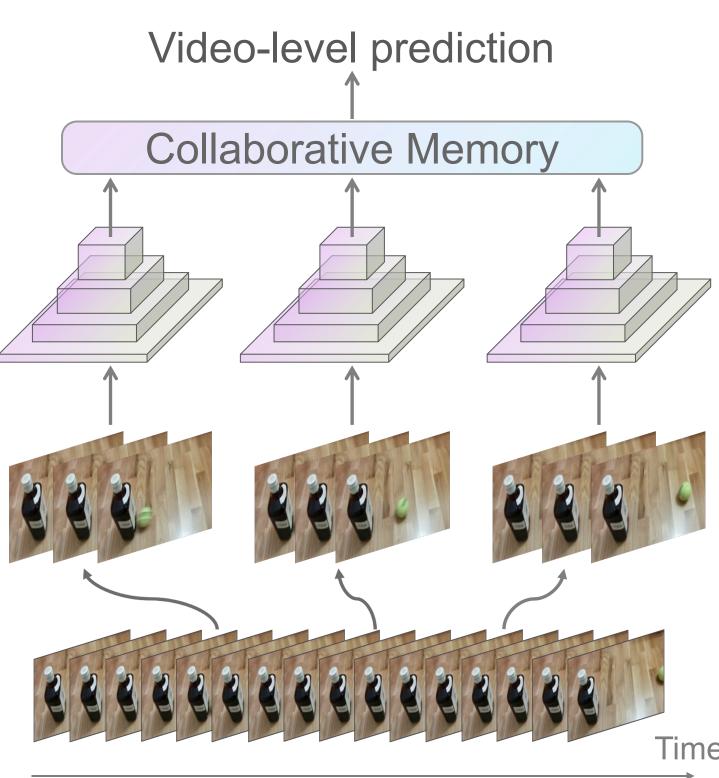
Ensure sufficient temporal coverage of the video

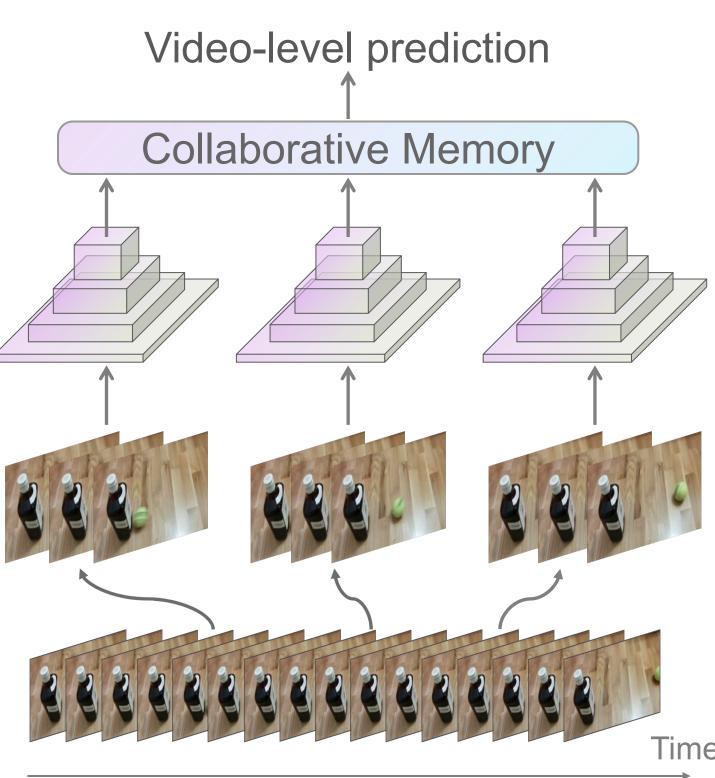
Collaborative memory

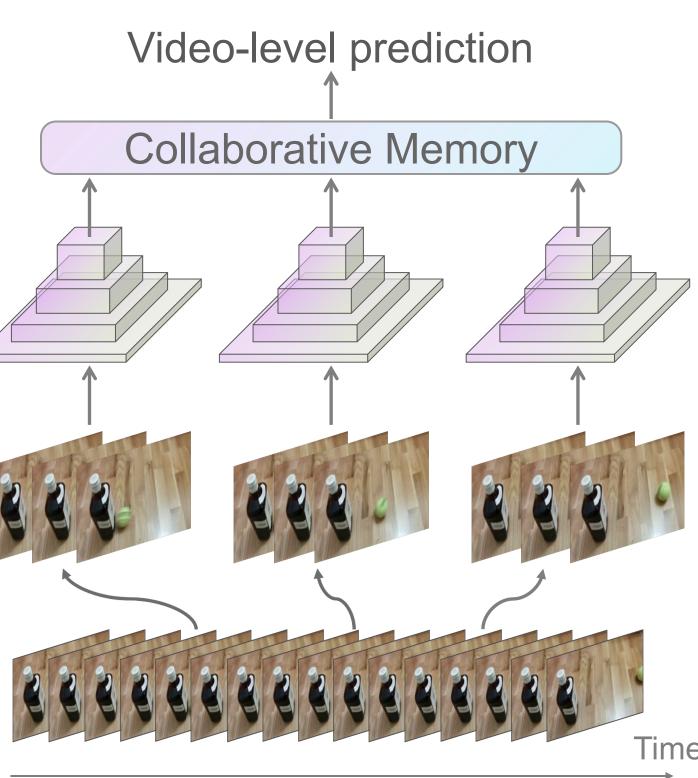
Model dependencies beyond short clips

Video-level supervision

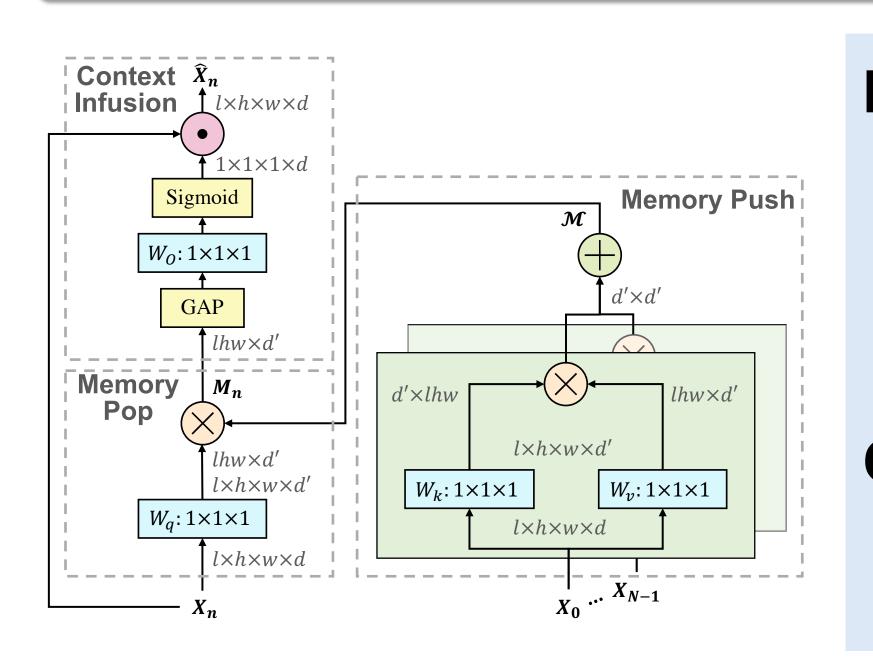
Joint optimization with a video-level supervision

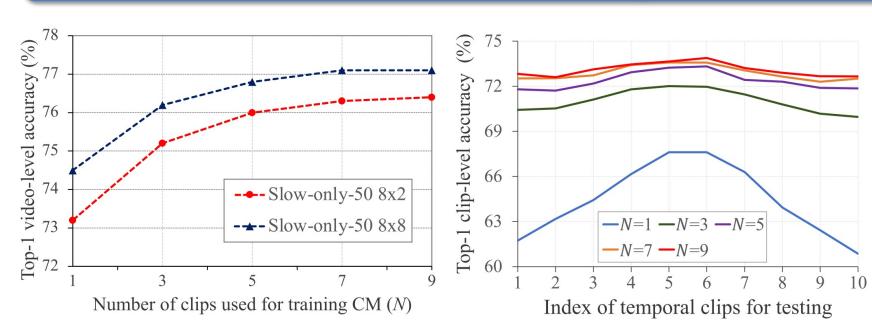






Collaborative Memory





Multi-clip	Memory	End-to-end	Top-1	Setting	Associative	Gating	Top-1	
	\checkmark	\checkmark	74.5	w/o memory			75.5	10 34 10 34 10 29 10 24
\checkmark		\checkmark	75.5	CM (avgpool)		\checkmark	75.8	- ⁻ 29 ⁻ ⁻ 29 ⁻ ⁻ 24
✓	\checkmark		75.9	CM (residual)			76.0	\overrightarrow{P} 19
\checkmark	\checkmark	\checkmark	76.8	CM (default)	\checkmark	\checkmark	76.8	
			-					Training iterations (K)

Both collaborative memory and end-to-end training contribute to the performance gain Our associate memory design can capture cross-clip interaction, while feature gating can prevent over-fitting

Methods	Kinetics-400	Kinetics-700	Charades	SSV1	Methods	Extra info.	AVA v2.2
NL I3D + GCN	_	_	39.7	46.1	AVSF-101	\checkmark	28.6
CorrNet-101	79.2	_	_	53.3	AIA (SlowFast-101)	\checkmark	32.3
SlowFast-101 + NL*	79.1	70.2	41.3	51.2	SlowFast-101*		29.0
Ours (SlowFast-101+NL)	81.4	72.4	44.6	53.7	Ours (SlowFast-101)		31.6

Memory interaction

- Memory push
- $\mathcal{M} = Push(\{X_n\}_{n=0}^{N-1}) = \frac{1}{N} \sum_{k=0}^{N-1} (X_n W_k)^T (X_n W_v)$
- Memory pop $M_n = Pop(\mathcal{M}, X_n) = (X_n W_q)\mathcal{M}$

Context infusion

Feature gating

 $\hat{X}_n = \sigma(Pool(M_n)W_O) \odot X_n + X_n$

Experiments

Model	Baseline	Ours	Δ	FLOPs
Slow-only-50 8×8	74.4	76.8	+2.4	1.03×
I3D-50+NL 32×2	74.9	77.5	+2.4	$1.02 \times$
R(2+1)D-50 16×2	75.7	78.0	+2.3	$1.01 \times$
SlowFast-50 4×16	75.6	77.8	+2.2	$1.02 \times$
SlowFast-50 8×8	76.8	78.9	+2.1	$1.03 \times$

Video-level learning (with N > 1) significantly **improves** video-level accuracy (2 ~ 3%) and clip-level accuracy Our framework generalizes to different backbone architectures and input configurations

Our approach achieves state-of-the-art results on both action recognition and detection benchmarks