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Motivation

End-to-end learning of 3D CNNSs has emerged as the prominent paradigm for video
classification

However, modeling a long video as a whole 1s not feasible due to the high
computational cost and large memory requirements



Motivation

~ End-to-end learning of 3D CNNSs has emerged as the prominent paradigm for video

classification

- However, modeling a long video as a whole is not feasible due to the high

computational cost and large memory requirements

~ The standard way of optimizing 3D video models is
clip-level training

- A single short clip is sampled from the full-length video at
each iteration

- The clip-based prediction is optimized w.r.t. the video-level
action label
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~ End-to-end learning of 3D CNNSs has emerged as the prominent paradigm for video
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Motivation

~ Limitation of clip-level training

= Not possible to capture long-range temporal dependencies beyond short clips

Something deflected from something
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Motivation

~ Limitation of clip-level training
= Not possible to capture long-range temporal dependencies beyond short clips

- Video-level label may not be well represented in a brief clip

Something deflected from something ?
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Our Approach

- End-to-end video-level learning with Collaborative Memory (CM)

= Optimize the clip-based model using video-level information collected from the whole video



Our Approach

- End-to-end video-level learning with Collaborative Memory (CM)

= Optimize the clip-based model using video-level information collected from the whole video

~  Multi-clip sampling at each iteration

- Ensure sufficient temporal coverage of the video
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Our Approach

- End-to-end video-level learning with Collaborative Memory (CM)

= Optimize the clip-based model using video-level information collected from the whole video
~  Multi-clip sampling at each iteration
- Ensure sufficient temporal coverage of the video

~ Collaborative memory [ Collaborative Memory ]

» Accumulate information from multiple clips

> Share the video-level context back with
individual clips




Our Approach

- End-to-end video-level learning with Collaborative Memory (CM)

= Optimize the clip-based model using video-level information collected from the whole video

= Multi-clip sampling at each iteration Video-level prediction

- Ensure sufficient temporal coverage of the video 1‘

~ Collaborative memory [ Collaborative Memory ]

» Accumulate information from multiple clips

> Share the video-level context back with
individual clips

= Video-level supervision

= Joint optimization of multiple clips with a video-
level loss




Collaborative Memory

Memory interaction
Memory push: accumulate information from multiple clips to build a global memory
Memory pop: retrieve clip-specific, video-level context from the global memory
Context infusion

Infuse the individual clip-based representations with video-level context

The idea of collaborative memory is generic and can be implemented in various ways
The memory footprint for storing the global memory should be manageable
Interactions with the memory should be computationally efficient

Individual clip-based representations should not be dominated by the video-level context



Collaborative Memory

~  Memory interaction

~ Associate memory

1 N—
M PUSh {Xn n= 0 — E X,)I‘] Xn“ )
n=0 N Memory Push
M
.i;'\"fn — P O])(M, X n) — (X n .{‘:”q)M
d'xd’
> X\:
d'xlhw O/ lhwxd'
Thwxd’ IxXhxwxd
IXhxwxd' Wy: 1x1x1 W,: 1x1x1
quXle 4 thXWXd +
lehXde | T
Xn—

|
Xn XO



Collaborative Memory

~  Memory interaction

~ Associate memory Context  Xn
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Coping with GPU Memory Constraint

- Strategy 1: Batch reduction
-~ Reduce the batch size B by a factor of N: B = round(B/N)

- Simple, applicable to most settings in practice

Clip-level training

(B=6 N=1)
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Coping with GPU Memory Constraint

- Strategy 1: Batch reduction
-~ Reduce the batch size B by a factor of N: B = round(B/N)

- Simple, applicable to most settings in practice
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Coping with GPU Memory Constraint

- Strategy 1: Batch reduction
~ Reduce the batch size B by a factor of N: B = round(B/N)
- Simple, applicable to most settings in practice

- Strategy 2: Multi-iteration
= Unroll the training of N clips into N consecutive iterations

- Allow to process long videos with arbitrarily large N

Clip-level training Batch reduction Multi-iteration
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Our Approach

v

End-to-end video-level learning with Collaborative Memory (CM)

= Optimize the clip-based model using video-level information collected from the whole video

v

Multi-clip sampling at each iteration
Video-level prediction

- Ensure sufficient temporal coverage of the video i

~ Collaborative memory ( Collaborative Memory )

> Accumulate information from multiple clips
= Share the video-level context back with individual clips
= Video-level supervision

~ Joint optimization of multiple clips with a video-level loss
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Experiments

Evaluating CM for video-level learning
Experiments on Kinetics-400 dataset

We use Slow-only network (Feichtenhofer et al) with 50 layers and the input clip length is 8 X8
(frames X stride)

We first train the backbone following its original schedule, then re-train it in conjunction with our
collaborative memory for video-level learning



Evaluating CM for Video-level Learning

- Impact of temporal coverage on video-level learning

>

Ablate the number of clips N used for training CM (N = 1 of clips N used clip-level training)
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Video-level learning with CM significantly

improves the video-level accuracy

2.6% improvement over single-clip baseline
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= Clip-level accuracy is significantly improved
especially for clips near the boundary of the
video



Evaluating CM for Video-level Learning

- Impact of temporal coverage on video-level learning
- Ablate the number of clips N used for training CM (N = 1 of clips N used clip-level training)

» @Generalization to different video backbones

> Our CM framework does not make any assumption about the backbone

Model Baseline Ours /A ' FLOPs

Slow-only-50 8 x 8 [ 1] 74.4 76.8 +2.4 1.03X
I3D-50+NL 32x2 [52] 74.9 77.5 +2.4 1.02X
R(2+1)D-50 16 x2 [4¥] 75.7 78.0 +2.3 1.01xX

SlowFast-504x16[11]  75.6  77.8 +2.2 1.02X
SlowFast-50 8 x 8 [1 1] 76.8 789 +2.1 1.03x




Ablation Studies

- Comparing different design choices for the memory mechanism

~ Pooling for memory interaction (avgpool) achieves inferior results due to the lack of inter-clip
interaction

- Removing feature gating operation (residual) results in performance drop due to over-fitting to the
video-level context during training

< —— Default (train)  ----- Default (val)
. L. . =44 ——Residual (train) ----- Residual (val)
Setting Associative Gating Top-1 5139 | Avgpool (train) ----- Avgpool (val)
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Ablation Studies

- Please refer to the paper for more ablation studies on different components of our
framework and training strategies

Multi-clip Memory End-to-end Top-1 Setting Associative Gating Top-1 Setting E E— Top-1
v v 74.5 Multi-clip (w/o memory) 155 ) 492 M 76.8
j p v 333 CM (avgpool) ;758 a=2  409M 768
i CM (residual) v 76.0 a=4 36.7M 76.8
v v v 76.8 CM (default) v v 76.8 a=38 346 M 76.4
(a) Evaluating different components of (b) Comparing different designs of our collaborative (c) Varying chann/el reduc-
our video-level learning framework. memory mechanism. tion ratio o = d/d .
Model Stage-wise Top-1 Model Batch reduction Multi-iteration Top-1 ]
Temporal stride
Model CM
Slow-onl os Slow-onl i 1650 2 4 8 16
d g 76.8 d v 76.8
Slow-only 73.2 743 744 744 76.8
R(2+1)D L R(2+1)D ¢ 12
v 78.0 v 78.0 R2+1)D 757 764 750 722 78.0
(d) Stage-wise training vs. training (e) Comparing different ways of training CM: (f) Comparing CM with backbones using

everything from scratch. batch reduction vs. multi-iteration. clips with large temporal strides.



Comparison with the State-of-the-Arts

>

Kinetics-400 and Kinetics-700 dataset

- Achieve state-of-the-art results without pre-training on other datasets or using optical flow

Methods Pretrain gglg (in;.g;;S Top-1
I3D [5] ImageNet X 216 xN/A  75.7
S3D-G [5%] ImageNet X 142.8xXN/A  77.2
LGD-3D-101 [3%£] ImageNet X N/A 81.2
I3D-101+NL [57] ImageNet : 359%30 ks 1
ip-CSN-152 [47] Sports 1M 109%x 30 79.2
CorrNet-101 Sports 1M 224 %30 81.0
MARS+RGB [6] none N/A 74.8
DynamoNet [¢] none N/A 77.9
CorrNet-101 [50] none 224 %30 79.2
SlowFast-101 8x8 [ 1] none 106 x 30 77.9
SlowFast-101 16 x8 [ 1] none 213x30 78.9
SlowFast-101+NL 16 x8 [ 1] none 234 %30 79.8
Ours (R(2+1)D-101 32x2) none 243 %30 80.5
Ours (SlowFast-101 8 x8) none 128 x 30 80.0
Ours (SlowFast-101+NL 8% 8) none 137%30 81.4

. GFLOPs
Methods Pretrain X crops Top-1
SlowFast-101+NL 8x8 [11] K600 115x%30 70.6
SlowFast-101+NL 16 x8 [ 1] K600 234x30 71.0
SlowFast-50 4x 16* K600 36x30 66.1
SlowFast-101 8 x 8* K600 12630 69.2
SlowFast-101+NL 8 x 8* K600 135x30 70.2
Ours (SlowFast-50 4 x 16) K600 37x30 68.3
Ours (SlowFast-101 8x8) K600 128 %30 70.9
Ours (SlowFast-101+NL 8 8) K600 13730 72.4
+2.2%

+2.5%



Comparison with the State-of-the-Arts

» Charades dataset

- Longer-range activities (30 seconds on average) than Kinetics, multi-label classification

~  Outperform other recent work on long-range temporal modeling (e.g., Timeception (Hussein et al),
LEB (Wu et al))

) GFLOPs
Methods Pretrain X crops Top-1
TRN [60] ImageNet N/A 252
I3D-101+NL [52] ImageNet+K400 544 x 30  37.5
STRG [57] ImageNet+K400 630 x 30  39.7
Timeception [23] K400 N/A 41.1
LFB (I3D-101+NL) [55] K400 N/A 42.5
SlowFast-101+NL [ 1] K400 234 %30 42.5
AVSlowFast-101+NL [57] K400 278 x 30 43.7
SlowFast-50 16 x 8* K400 131x30 394
SlowFast-101+NL 16 x 8* K400 273 %30 41.3
Ours (SlowFast-50 16 x 8) K400 1355630 42.9

Ours (SlowFast-101+NL 16 x 8) K400 277x%30 44.6 +3.3%




Collaborative Memory for Action Detection

>

AV A dataset

Sample multiple clips within a certain temporal window [t — w, t + w] to detect action at time ¢t

>

Methods Pretrain mAP

ACRN [423] K400 17.47
AVSF-50 4x16 [57] K400 27.8f
AT (I13D) [13] K400 25.0
LFB(R50+NL) [55] K400 25.8
R50+NL* [55] K400 23.6
SF-50 4x16* [11] K400 23.6
Ours (R50+NL) K400 26.3
Ours (SF-50 4x16) K400 25.8

+2.2%

Methods Pretrain mAP
AVSF-101 8x8 [57] K400 28.6%
ATA(SF-50 4x16) [45] K700 29.8f
AIA(SF-101 8x8) [45] K700 32.3f
SF-101+NL 8x8 [11] K600 29.0
SF-50 4x16* [11] K700 26.9
SF-101 8x8* [11] K700 29.0
Ours (SF-50 4x16) K700 29.8
Ours (SF-101 8x8) K700 31.6

+2.6%



Conclusion

Video-level prediction

t

Collaborative Memory J

- We presented an end-to-end learning framework
that optimizes classification models using video- (
level information

= Our approach hinges on a collaborative memory
mechanism that captures long-range temporal
dependencies beyond short clips

= QOur approach significantly improves the accuracy
of video models on both action recognition and
detection benchmarks
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