Beyond Short Clips: End-to-End Video-level Learning with Collaborative Memories

Xitong Yang¹, Haoqi Fan², Lorenzo Torresani^{2,3}, Larry Davis¹, Heng Wang²

¹University of Maryland, College Park ²Facebook AI ³Dartmouth

- End-to-end learning of 3D CNNs has emerged as the prominent paradigm for video classification
- However, modeling a long video as a whole is not feasible due to the high computational cost and large memory requirements

- End-to-end learning of 3D CNNs has emerged as the prominent paradigm for video classification
- However, modeling a long video as a whole is not feasible due to the high computational cost and large memory requirements
- The standard way of optimizing 3D video models is clip-level training
 - A single short clip is sampled from the full-length video at each iteration
 - The clip-based prediction is optimized w.r.t. the video-level action label

- End-to-end learning of 3D CNNs has emerged as the prominent paradigm for video classification
- However, modeling a long video as a whole is not feasible due to the high computational cost and large memory requirements
- The standard way of optimizing 3D video models is *clip-level training*
 - A single short clip is sampled from the full-length video at each iteration
 - The clip-based prediction is optimized w.r.t. the video-level action label

- Limitation of clip-level training
 - Not possible to capture long-range temporal dependencies beyond short clips

Something *deflected from* something

- Limitation of clip-level training
 - Not possible to capture long-range temporal dependencies beyond short clips
 - Video-level label may not be well represented in a brief clip

Something *deflected from* something ?

- End-to-end video-level learning with Collaborative Memory (CM)
 - Optimize the *clip-based* model using *video-level* information collected from the whole video

- End-to-end video-level learning with Collaborative Memory (CM)
 - Optimize the *clip-based* model using *video-level* information collected from the whole video
- Multi-clip sampling at each iteration
 - Ensure sufficient temporal coverage of the video

- End-to-end video-level learning with Collaborative Memory (CM)
 - Optimize the *clip-based* model using *video-level* information collected from the whole video
- Multi-clip sampling at each iteration
 - Ensure sufficient temporal coverage of the video
- Collaborative memory
 - Accumulate information from multiple clips
 - Share the video-level context back with individual clips

- End-to-end video-level learning with Collaborative Memory (CM)
 - Optimize the *clip-based* model using *video-level* information collected from the whole video
- Multi-clip sampling at each iteration
 - Ensure sufficient temporal coverage of the video
- Collaborative memory
 - Accumulate information from multiple clips
 - Share the video-level context back with individual clips
- Video-level supervision
 - Joint optimization of multiple clips with a videolevel loss

Collaborative Memory

- Memory interaction
 - Memory push: accumulate information from multiple clips to build a global memory
 - Memory pop: retrieve clip-specific, video-level context from the global memory
- Context infusion
 - Infuse the individual clip-based representations with video-level context
- The idea of collaborative memory is generic and can be implemented in various ways
 - The memory footprint for storing the global memory should be manageable
 - Interactions with the memory should be computationally efficient
 - Individual clip-based representations should not be dominated by the video-level context

Collaborative Memory

- Memory interaction
 - Associate memory

$$\mathcal{M} = Push(\{X_n\}_{n=0}^{N-1}) = \frac{1}{N} \sum_{n=0}^{N-1} (X_n W_k)^T (X_n W_v)$$

$$M_n = Pop(\mathcal{M}, X_n) = (X_n W_q) \mathcal{M}$$

Collaborative Memory

- Memory interaction
 - Associate memory

$$\mathcal{M} = Push(\{X_n\}_{n=0}^{N-1}) = \frac{1}{N} \sum_{n=0}^{N-1} (X_n W_k)^T (X_n W_v)$$
$$M_n = Pop(\mathcal{M}, X_n) = (X_n W_q) \mathcal{M}$$

- Context infusion
 - Feature gating

$$\hat{X}_n = \sigma(Pool(M_n)W_O) \odot X_n + X_n$$

Coping with GPU Memory Constraint

- Strategy 1: Batch reduction
 - Reduce the batch size *B* by a factor of *N*: $\hat{B} = round(B/N)$
 - Simple, applicable to most settings in practice

Coping with GPU Memory Constraint

- Strategy 1: Batch reduction
 - Reduce the batch size *B* by a factor of *N*: $\hat{B} = round(B/N)$
 - Simple, applicable to most settings in practice

Coping with GPU Memory Constraint

- Strategy 1: Batch reduction
 - Reduce the batch size *B* by a factor of *N*: $\hat{B} = round(B/N)$
 - Simple, applicable to most settings in practice
- Strategy 2: Multi-iteration
 - Unroll the training of N clips into N consecutive iterations
 - Allow to process long videos with arbitrarily large N

- End-to-end video-level learning with Collaborative Memory (CM)
 - Optimize the *clip-based* model using *video-level* information collected from the whole video
- Multi-clip sampling at each iteration
 - Ensure sufficient temporal coverage of the video
- Collaborative memory
 - Accumulate information from multiple clips
 - Share the video-level context back with individual clips
- Video-level supervision
 - Joint optimization of multiple clips with a video-level loss

$$\mathcal{L}_{video} = \frac{1}{N} \sum_{n=0}^{N-1} \mathcal{L}\left(h(\hat{X}_n)\right) + \alpha \mathcal{L}\left(\frac{1}{N} \sum_{n=0}^{N-1} h(\hat{X}_n)\right)$$

Experiments

- Evaluating CM for video-level learning
 - Experiments on Kinetics-400 dataset
 - We use Slow-only network (Feichtenhofer et al) with 50 layers and the input clip length is 8×8 (frames × stride)
 - We first train the backbone following its original schedule, then re-train it in conjunction with our collaborative memory for video-level learning

Evaluating CM for Video-level Learning

- Impact of temporal coverage on video-level learning
 - Ablate the number of clips *N* used for training CM (N = 1 of clips *N* used clip-level training)

- Video-level learning with CM significantly improves the *video-level* accuracy
- 2.6% improvement over single-clip baseline with N = 9

 Clip-level accuracy is significantly improved especially for clips near the boundary of the video

Evaluating CM for Video-level Learning

- Impact of temporal coverage on video-level learning
 - Ablate the number of clips *N* used for training CM (N = 1 of clips *N* used clip-level training)
- Generalization to different video backbones
 - Our CM framework does not make any assumption about the backbone

Model	Baseline	Ours	\bigtriangleup	FLOPs
Slow-only-50 8×8 [11]	74.4	76.8	+2.4	1.03×
I3D-50+NL 32×2 [52]	74.9	77.5	+2.4	$1.02 \times$
R(2+1)D-50 16×2 [48]	75.7	78.0	+2.3	$1.01 \times$
SlowFast-50 4×16 [11]	75.6	77.8	+2.2	1.02×
SlowFast-50 8×8 [11]	76.8	78.9	+2.1	$1.03 \times$

Ablation Studies

- Comparing different design choices for the memory mechanism
 - Pooling for memory interaction (avgpool) achieves inferior results due to the lack of inter-clip interaction
 - Removing feature gating operation (residual) results in performance drop due to over-fitting to the video-level context during training

Setting	Associative	Gating	Top-1
Multi-clip (w/o memory)			75.5
CM (avgpool)		\checkmark	75.8
CM (residual)	\checkmark		76.0
CM (default)	\checkmark	\checkmark	76.8

Ablation Studies

 Please refer to the paper for more ablation studies on different components of our framework and training strategies

Multi-clip	Memory	End-to-end	Top-1
	\checkmark	\checkmark	74.5
\checkmark		\checkmark	75.5
\checkmark	\checkmark		75.9
~	\checkmark	\checkmark	76.8

(a) Evaluating **different components** of our video-level learning framework.

Model	Stage-wise	Top-1
Slow-only		76.1
	\checkmark	76.8
R(2+1)D	\checkmark	77.7 78.0
	\checkmark	/8.0

(d) **Stage-wise training** *vs.* training everything from scratch.

Setting	Associative	Gating	Top-1
Multi-clip (w/o memory)			75.5
CM (avgpool)		\checkmark	75.8
CM (residual)	\checkmark		76.0
CM (default)	\checkmark	\checkmark	76.8

(b) Comparing **different designs** of our collaborative memory mechanism.

Model	Batch reduction	Multi-iteration	Top-1
Slow-only		\checkmark	76.6
	\checkmark		76.8
$\mathbf{P}(2+1)\mathbf{D}$		\checkmark	77.9
$\mathbf{K}(2 \pm 1)\mathbf{D}$	\checkmark		78.0

(e) Comparing different ways of training CM: **batch reduction** *vs*. multi-iteration.

Setting	#Param.	Top-1
$\alpha = 1$	49.2 M	76.8
$\alpha = 2$	40.9 M	76.8
$\alpha = 4$	36.7 M	76.8
$\alpha = 8$	34.6 M	76.4

(c) Varying channel reduction ratio $\alpha = d/d'$.

Model	1	Temporal stride					
	2	4	8	16			
Slow-only	73.2	74.3	74.4	74.4	76.8		
R(2+1)D	75.7	76.4	75.0	72.2	78.0		

(f) Comparing CM with backbones using clips with **large temporal strides**.

Comparison with the State-of-the-Arts

- Kinetics-400 and Kinetics-700 dataset
 - Achieve state-of-the-art results without pre-training on other datasets or using optical flow

Methods	Pretrain	Only RGB	GFLOPs × crops	Top-1	Methods	Pretrain	GFLOPs × crops	Top-1
I3D [5]	ImageNet	×	216×N/A	75.7	SlowFast-101+NL 8×8 [11]	K600	115×30	70.6
S3D-G [58]	ImageNet	×	142.8×N/A	77.2	SlowFast-101+NL 16×8 [11]	K600	234×30	71.0
LGD-3D-101 [38]	ImageNet	×	N/A	81.2	SlowFast 50 $4 \times 16^{*}$	K600	26×20	66.1
I3D-101+NL [52]	ImageNet	1	359×30	77.7	$SlowFast 101.8 \times 8^*$	K600	126×20	60.2
ip-CSN-152 [47]	Sports1M	1	109×30	79.2	SlowFast 101 NU 8×8	K600	120×30	70.2
CorrNet-101	Sports1M	1	224×30	81.0	SlowFast-101+INL 8×8	K000	155×30	/0.2
MARS+RGB [6]	none	1	N/A	74.8	Ours (SlowFast-50 4×16) Ours (SlowFast-101 8×8)	K600 K600	37×30 128×30	68.3 70.9
DynamoNet [8]	none	1	N/A	77.9	Ours (SlowFast-101+NL 8×8)	K600	137×30	72.4
CorrNet-101 [50]	none	1	224×30	79.2				
SlowFast-101 8×8 [11]	none	 Image: A second s	106×30	77.9			12 207	
SlowFast-101 16×8 [11]	none	1	213×30	78.9			+2.2%	
SlowFast-101+NL 16×8 [11]	none	 Image: A second s	234×30	79.8				
Ours (R(2+1)D-101 32×2)	none	1	243×30	80.5	+2.5%			
Ours (SlowFast-101 8×8)	none	1	128×30	80.0				
Ours (SlowFast-101+NL 8×8)	none	1	137×30	81.4	/			

Comparison with the State-of-the-Arts

- Charades dataset
 - Longer-range activities (30 seconds on average) than Kinetics, multi-label classification
 - Outperform other recent work on long-range temporal modeling (*e.g.*, Timeception (Hussein et al), LFB (Wu et al))

Methods	Pretrain	GFLOPs × crops	Top-1
TRN [60]	ImageNet	N/A	25.2
I3D-101+NL [52]	ImageNet+K400	544×30	37.5
STRG [53]	ImageNet+K400	630×30	39.7
Timeception [23]	K400	N/A	41.1
LFB (I3D-101+NL) [55]	K400	N/A	42.5
SlowFast-101+NL [11]	K400	234×30	42.5
AVSlowFast-101+NL [57]	K400	278×30	43.7
SlowFast-50 16×8*	K400	131×30	39.4
SlowFast-101+NL 16×8*	K400	273×30	41.3
Ours (SlowFast-50 16×8)	K400	135×30	42.9
Ours (SlowFast-101+NL 16×8)	K400	277×30	44.6

Collaborative Memory for Action Detection

+2.2%

- AVA dataset
 - Sample multiple clips within a certain temporal window [t w, t + w] to detect action at time t

Methods	Pretrair	n mAP
ACRN [43]	K400	17.4†
AVSF-50 4×16 [57]	K400	27.8^{\dagger}
AT (I3D) [13]	K400	25.0
LFB(R50+NL) [55]	K400	25.8
R50+NL* [55]	K400	23.6
SF-50 4×16* [11]	K400	23.6
Ours (R50+NL)	K400	26.3
Ours (SF-50 4×16)	K400	25.8

Methods	Pretrair	n mAP
AVSF-101 8×8 [57]	K400	28.6†
AIA(SF-50 4×16) [45]	K700	29.8^{\dagger}
AIA(SF-101 8×8) [45]	K700	32.3†
SF-101+NL 8×8 [11]	K600	29.0
SF-50 4x16* [11]	K700	26.9
SF-101 8x8* [11]	K700	29.0
Ours (SF-50 4×16)	K700	29.8
Ours (SF-101 8×8)	K700	31.6

> +2.6%

Conclusion

- We presented an end-to-end learning framework that optimizes classification models using videolevel information
- Our approach hinges on a collaborative memory mechanism that captures long-range temporal dependencies beyond short clips
- Our approach significantly improves the accuracy of video models on both action recognition and detection benchmarks

